翻訳と辞書 |
Lie coalgebra : ウィキペディア英語版 | Lie coalgebra In mathematics a Lie coalgebra is the dual structure to a Lie algebra. In finite dimensions, these are dual objects: the dual vector space to a Lie algebra naturally has the structure of a Lie coalgebra, and conversely. ==Definition== Let ''E'' be a vector space over a field ''k'' equipped with a linear mapping from ''E'' to the exterior product of ''E'' with itself. It is possible to extend ''d'' uniquely to a graded derivation (this means that, for any ''a'', ''b'' ∈ ''E'' which are homogeneous elements, ) of degree 1 on the exterior algebra of ''E'': : Then the pair (''E'', ''d'') is said to be a Lie coalgebra if ''d''2 = 0, i.e., if the graded components of the exterior algebra with derivation form a cochain complex: :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lie coalgebra」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|